

(지난 호에 이어서)

다. 배수용 펌프의 실체 사진

배수용 펌프의 내부를 분석하기 위해 몸체 밑에서 약 2/3 지점의 볼트를 풀어 상부를 분해한 결과 [그림 7]과 같았 다. 덮개 부분과 내부에 상당량의 오수(汚水)가 있는 것 을 확인할 수 있었고, 권선 및 전원 연결 전선의 피복이 손상되어 서로 합선(단락)된 것을 확인하였다. 또한 코일 부분에서도 심하게 오염되었고 권선이 층간 단락된 부분 을 확인할 수 있었다. [그림 8]은 콘덴서와 전원 연결 전 선을 확대한 것이다. 실체 사진에 나타난 바와 같이 전선 은 물기가 많이 뭍은 상태였으며 절연 피복이 손상되어 있고, 전선의 용융 흔적이 있는 것을 확인할 수 있다.

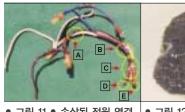
● 그림 7 ● 상부 덮개를 제거한 내부 |● 그림 8 ● 전원 연결선의 의 실체 사진

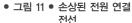
실체 사진

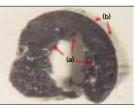
[그림 7]에서 덮개 부분을 분리하고 콘덴서와 기타 전원 연결 부분의 전선을 분리하여 내부의 고정자 및 회전자 를 분해한 실체 사진이 [그림 9]이다. [그림 9]는 배수용 펌프를 분해한 것으로 (a)에는 각각의 고무 패킹과 고정 자. 회전자 등이 있다. (b)는 고정자 부분인 권선만을 확 대하여 촬영한 것으로, 전원 연결 부분의 전선과 권선 사 이에 용융 흔적을 확인할 수 있었다.

● 그림 9 ● 배수용 펌프를 분해한 실체 사진

[그림 10]은 고정자 권선의 실체 사진은 나타낸 것으로 (a)는 정상 권선이며. (b)는 소손된 권선을 나타낸 것이 다. (b)에서와 같이 층간 단락된 권선 부분에 용융 흔적 이 있고 열적으로 손상을 입어 층간 단락된 극 부분이 검 게 탄화된 것을 알 수 있다. 층간 단락된 고정자 권선 부 분으로 용융 흔적이 확인되며, 권선 연결부에 접촉이 불 량하고 외부의 오수(汚水)가 침투되어 상당 시간에 걸쳐 열화(劣化) 과정이 있었던 것으로 판단된다.

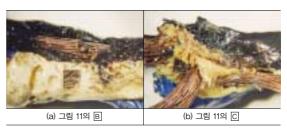



● 그림 10 ● 고정자 권선 외형의 실체 사진


라. 전선의 금속조직 분석

[그림 11]은 전원 연결선의 용용 흔적을 나타낸 실체 현 미경 사진이다. 절연 피복이 소손된 부분과 연선이 용융 된 부분을 A. B. C. D. E의 다섯 부분으로 나누어 실체 현미경으로 확대하여 분석하였다. [그림 12]는 🗚 부분의 절연 피복의 단면을 분석한 것으로 열적 스트레 스의 방향이 내부에서 밖으로 진행되는 것[(a) 부분]을 확인할 수 있다.

또한 (b)의 경우 (a)보다 열적 스트레스를 적게 받은 것 으로 확인되었다. 결과적으로 전선의 내부 발열에 의해 피복이 손상되었음을 의미한다.

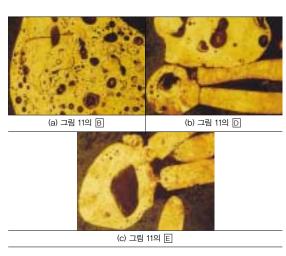


● 그림 12 ● 절연 피복의 단면

[그림 13]에서 확인할 수 있듯이 [그림 11]의 圓 부분의 연선(여러 가닥을 꼬아서 만든 전선)에는 일부 용융 흔적이 확인되었다. 또한 소손된 절연 피복의 주변에 비산된 연선의 구리 성분이 있는 것을 확인할 수 있다. 그리고 [그림 11]의 ☑ 부분의 연선에 접촉된 절연 피복은 탄화되었다.

● 그림 13 ● [그림 11]의 B , C 실체 현미경 사진

[그림 14]는 [그림 11]의 [D와 E] 부분으로 권선과 바로 연결되어 있던 인출선이다. 실체 현미경에 의해 분석한 결과 두 부분 모두에서 용융 흔적이 확인되었다. [그림 11]의 [B], [D], [E] 부분에서 발견된 용융 흔적을 정밀분석하기 위해 금속 현미경을 이용하였다.


● 그림 14 ● [그림 11]의 D, E 실체 현미경 사진

[그림 15]의 (a)는 [그림 11]의 圖부분의 절연 피복 사이에 있는 연선의 용융된 부분으로 절연 피복이 내부에 서부터 녹아 절연 피복이 벗겨진 것을 볼 수 있었다. 금속 단면 조직에서도 알 수 있듯이 열적 스트레스에 의해 소손된 후 전기적으로 합선되었을 때 나타나는 주상

조직과 다양한 형태의 구멍이 확인되었다.

[그림 15]의 (b)는 [그림 11]의 D 부분의 단면 금속 조 직을 나타낸 금속 현미경 사진이다. 사진에서 알 수 있듯 이 경계면을 중심으로 주상 조직이 성장되었으며, 구멍 등이 나타나는 것으로 보아 전기적인 합선이 발생했음 을 알 수 있다.

[그림 15]의 (c)는 [그림 11]의 E 부분의 금속 단면 조 직을 나타낸 금속 현미경 사진이다. 사진에서 알 수 있듯 이 경계면을 중심으로 주상 조직이 성장되었으며, 구멍 등이 나타나는 것으로 보아 전기적인 합선이 발생했음 을 알 수 있다.

● 그림 15 ● 전원 연결 전선의 용융 흔적의 금속 단면 사진

4. 맺음말

가. 전압 인가에 의한 동작 확인

정격 전압을 인가할 때 펌프에는 약 19m의 전류가 흘렀 으며, 전동기는 동작하지 않았다. 그리고 펌프의 외부는 기계적인 스트레스. 균열. 용융 흔적 등이 없는 것으로 판단된다.

나. 전기저항 특성

전원 연결선과 접지선 사이의 저항을 측정하여 권선과 외함의 절연 상태를 확인한 결과 0.50㎞. 0.56㎞의 절연 저항이 측정되어 외함과 권선이 전기적으로 절연상태가 좋지 않음을 확인할 수 있다.

그리고 전극과 전극 사이에는 약 0.46 №의 절연 저항이 측정되는 것으로 보아 권선의 일부가 단선(또는 반단선) 되었던가 권선의 일부가 물리 · 화학적으로 변형이 있었 던 것으로 판단된다.

다. 펌프의 실체 사진 분석

배수용 펌프의 내부를 분석한 결과, 덮개 부분과 내부에 상당량의 오수(汚水)가 있는 것을 확인할 수 있었고. 권 선 및 전원 연결 전선의 피복이 손상되어 서로 합선(단 락)된 것을 확인하였다.

또한 코일 부분에서도 심하게 오염되었고 권선에서 층 가 단락된 부분을 확인할 수 있었다.

라. 금속조직 분석

고정자 권선에 연결되는 전원선이 용융되었고 절연 피 복이 내부에서부터 녹아 절연 피복이 벗겨진 것을 볼 수 있었다.

금속 단면 조직에서 경계면을 중심으로 주상 조직이 성 장되었으며, 구멍(void) 등이 나타나는 것으로 보아 전 기적인 합선이 발생했음을 알 수 있다.

이상과 같은 내용을 종합해 보면 배수용 펌프로 사용되 는 펌프가 어떤 이유인지는 명확히 밝힐 수 없으나 전원 선의 절연 피복이 소손된 후 물기, 흡기 등 이물질이 유 입되어 장시간 층간 단락이 발생하여 사고로 확대된 것 으로 판단된다.